If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+20x-60=0
a = 2; b = 20; c = -60;
Δ = b2-4ac
Δ = 202-4·2·(-60)
Δ = 880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{880}=\sqrt{16*55}=\sqrt{16}*\sqrt{55}=4\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{55}}{2*2}=\frac{-20-4\sqrt{55}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{55}}{2*2}=\frac{-20+4\sqrt{55}}{4} $
| -10x-8=4(5-x)+2x | | 4x-6=2x+12;x=9 | | 4n+7=76 | | 5x-3=3x+61 | | x^2+(3X-30)^2=100 | | 3(x-2)+7=28 | | 31=-9z+4 | | -8+7x+5x=-8 | | 3(5a+4)=42 | | t/27=2/3 | | 8x-8=-x+10 | | 0.42w=2.52 | | 2x-8/3/5=33 | | 6*6*6*6*6*6*6*6*6*6/6x=6*6*6*6*6*6 | | 70=30x+100 | | 3x+5=6-9 | | 8(e-4)=40 | | 1.2c-0.8=1.6 | | 15h-2.55h=460.65 | | 7+2x=214 | | y+7×17+1=180 | | 2x+5=x–15 | | 49=13-4x | | 7(x-10)-2(x+5)=4x-7+6-3 | | 0.1x1.35.1= | | 7x+1+4x-8=180 | | 10a-6=8a+333 | | -9z+4=31 | | -1(1)+x=2 | | 12x*12*12*12*12=12*12*12*12*12*12*12*12 | | 3(w+8)=-2(9w-4)+9w | | e/2+6=10 |